Sunlight Energy vs. Energy Consumption

SUNLIGHT ENERGY FALLING ON THE EARTH

342 sunlight watts per m^2

Kiehl JT, Trenberth, Kevin, 1997 "Earth Annual Global Mean

Francis Divided " Pullating of Agrangian Matagin Agrange 70"

Energy Budget", Bulletin of American Meteor. Assn 78

342 Joules/sec per m^2 1 watt (power)=1 joule (energy)/sec

(the total solar radiation arriving at the atmosphere is ~1361 watts/m^2. However, not all reaches the surface and not all is visible light.) Coddington, O.; Lean, J. L.; Pilewskie, P.; Snow,

M.; Lindholm, D. (22 August 2016). "A Solar Irradiance

Climate Data Record". Bulletin of the American Meteorological

Society. 97 (7

30% reflected back 6% atmosphere, 20% cloud, 4% earth

12756200 meters Earth diameter - cross-section 1.27805E+14 m^2 Earth cross section area

3.05965E+16 Joules per second (Watts) Sunlight power (Energy per time) falling on the earth

WORLD ENERGY CONSUMPTION

599.378 quadrillion BTU per year 2018 world power consumption (energy over time). Http://eia.gov

5.99378E+17 BTU per year

1055 Joules per BTU

6.32344E+20 Joules per year

365 days per year

24 hr per day

60 min per hour

60 seconds per minute

2.00515E+13 Joules per second (Watts) World "energy" consumption

1,526 Ratio of sunlight to world consumption If 100% useable

The sunlight energy falling on the world is 1,526 times the world energy consumption

EARTH INTERNAL HEAT

4.70E+13 Watts

Davies, J. H., & Davies, D. R. (2010). Earth's surface heat flux.

Solid Earth, 1(1), 5–24.

1 Joules per watt

4.70E+13 Joules per second

Ratio of Earth's heat to world consumption

If 100% useable

The amount of internal Earth heat energy is 2 times the world energy consumption

Sunlight Energy vs. Energy Consumption

UNITED STATES

9,833,520 surface area - km^2 USA surface area

2.35E+15 Joules per second sunlight falling on USA if full 24 hr.

78% reduction for sunlight angle 39 degrees latitude 1.83E+15 Joules per second If 100% useable

92.943 Quadrillion BTU per year USA power (energy over time) consumption - 2018 (EIA.GOV)

9.2943E+16 BTU per year 1055 Joules per BTU 9.80549E+19 Joules per year 365 days per year

12 hr per day 60 min per hour

60 seconds per minute

6.2186E+12 USA Joules per second USA power consumption

Ratio of sunlight to USA consumption

If 100% useable

0.34%

33,431 Km² of sunlight equal to USA consumption - about size of Maryland

The amount of sunlight energy falling on the USA is 294 times its consumption and about equal to that falling on Maryland - pretty impressive. But there's another way of looking at it - if you controlled all the energy used in the US, you only control the state of Maryland compared with the sunlight falling on the whole country.

However, the average solar farm output is 200,000 watts per acre

200,000 Watts per acre Actual output of a solar farm

31,092,994 acres Needed to supply USA consumption from solar alone 125,829 km² Needed to supply USA consumption from solar alone

1.3% of USA land area

Based on actual solar farm output, the whole state of Mississippi would be necessary To supply USA consumption.